Classification of encrypted traffic for applications based on statistical features

Authors

Abstract:

Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applications make these features imperfect for such tasks. As a remedy, network traffic classification using machine learning techniques is now evolving. In this article, a new semi-supervised learning is proposed which utilizes clustering algorithms and label propagation techniques. The clustering part is based on graph theory and minimum spanning tree (MST) algorithm. In the next level, some pivot data instances are selected for the expert to vote for their classes, and the identified class labels will be used for similar data instances with no labels. In the last part, the decision tree algorithm is used to construct the classification model. The results show that the proposed method has a precise and accurate performance in classification of encrypted traffic for the network applications. It also provides desirable results for plain un-encrypted traffic classification, especially for unbalanced streams of data.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

application of upfc based on svpwm for power quality improvement

در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...

15 صفحه اول

Semi-supervised Encrypted Traffic Classification Using Composite Features Set

Many network management tasks such as managing bandwidth budget and ensuring quality of service objectives rely on accurate classification of network traffic. But the statistical features of encrypted traffics are not stable and do not contain sufficient information for classification all the time. Some applications support multiple protocols, and the behaviors of these applications are complic...

full text

Encrypted Internet Traffic Classification Method based on Host Behavior

Accurate network traffic classification plays important roles in many areas such as traffic engineering, QoS and intrusion detection etc. Encrypted Peer-to-Peer (P2P) applications have dramatically grown in popularity over the past few years, and now constitute a significant share of the total traffic in many networks. To solve the drawback of the previous classification scheme for encrypted ne...

full text

A survey of methods for encrypted traffic classification and analysis

With the widespread use of encrypted data transport network traffic encryption is becoming a standard nowadays. This presents a challenge for traffic measurement, especially for analysis and anomaly detection methods which are dependent on the type of network traffic. In this paper, we survey existing approaches for classification and analysis of encrypted traffic. First, we describe the most w...

full text

the innovation of a statistical model to estimate dependable rainfall (dr) and develop it for determination and classification of drought and wet years of iran

آب حاصل از بارش منبع تأمین نیازهای بی شمار جانداران به ویژه انسان است و هرگونه کاهش در کم و کیف آن مستقیماً حیات موجودات زنده را تحت تأثیر منفی قرار می دهد. نوسان سال به سال بارش از ویژگی های اساسی و بسیار مهم بارش های سالانه ایران محسوب می شود که آثار زیان بار آن در تمام عرصه های اقتصادی، اجتماعی و حتی سیاسی- امنیتی به نحوی منعکس می شود. چون میزان آب ناشی از بارش یکی از مولفه های اصلی برنامه ...

15 صفحه اول

Features Selection for Ids in Encrypted Traffic Using Genetic Algorithm

Intrusion Detection System (IDS) is one method to detect unauthorized intrusions into computer systems and networks. On the other hand, encrypted exchanges between users are widely used to ensure data security. Traditional IDSs are not able to reactive efficiently in encrypted and tunneled traffic due to inability to analyze packet content. An encrypted malicious traffic is able to evade the de...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 1

pages  29- 43

publication date 2018-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023